From:	Peralta, Rene (Fed)
To:	Calik, Cagdas (Int\|Assoc)
Cc:	Sonmez Turan, Meltem (Fed)
Subject:	Re: MC of the Counting function (8,4) is 6.
Date:	Friday, September 16, 2016 8:36:37 AM

Well, I don't think that "proof" makes any sense now.
I am looking at the problem again.

Regards, Rene.

From: Peralta, Rene (Fed)
Sent: Thursday, September 15, 2016 6:35 PM
To: Calik, Cagdas (IntlAssoc)
Cc: Sonmez Turan, Meltem (Assoc); Peralta, Rene (Fed)
Subject: Re: MC of the Counting function $(8,4)$ is 6.
Great. I have a PQC meeting tomorrow, but maybe I will skip it. Let us play it by ear.

I am attaching what I think is the proof we needed (I think what you wanted is that the multiplicative complexity of
$u v f$
(where u, v are variables and f is a function of variables other than u, v)
is 1 + mult_comp(v f)

That is a corollary of the claim in the attached.

Regards, Rene.

Dr. Rene Peralta
Computer Security Division
NIST
(301) 975-8702

Gaithersburg, MD 20899-8930

From: Calik, Cagdas (Int|Assoc)
Sent: Thursday, September 15, 2016 4:48 PM
To: Peralta, Rene (Fed)
Cc: Sonmez Turan, Meltem (Assoc)
Subject: MC of the Counting function $(8,4)$ is 6 .
Hi Rene,
By using the same approach (reducing the number of variables after affine transformations) we were able to find a 6 multiplication implementation of the counting function $E(8,4)$. In your "Tight
Bounds..." paper with Joan, the MC of this function was left as an open question, it could be either 6 or 7 .
We hope to give you the details of the implementation tomorrow morning.
Cagdas \& Meltem

